

Tetrahedron Letters 43 (2002) 8313-8317

Iron(II)-promoted rearrangement of 1,4-diaryl-2,3-dioxabicyclo[2.2.2]oct-5-enes: a mechanism distinct from that postulated previously

Masaki Kamata,^{a,*} Chika Satoh,^a Hye-Sook Kim^b and Yusuke Wataya^b

^aDepartment of Chemistry, Faculty of Education and Human Science, Niigata University, Ikarashi, Niigata 950-2181, Japan ^bFaculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan

Received 12 August 2002; revised 11 September 2002; accepted 13 September 2002

Abstract—Reactions of 1,4-diaryl-2,3-dioxabicyclo[2.2.2]oct-5-enes **1a**–c (**1a**: Ar = p-FC₆H₄, **1b**: $Ar = C_6H_5$, **1c**: Ar = p-MeC₆H₄) with FeBr₂ afforded *syn*-1,2;3,4-bis(epoxy)-1,4-diarylcyclohexanes **4a**–c and *cis*-3,6-diaryl-2,3-epoxycyclohexanones **5a**–c as major products instead of the previously reported 1-aroyl-3-aryl-2,3-epoxycyclopentanes **2a**–c. © 2002 Elsevier Science Ltd. All rights reserved.

Much attention has been paid to bicyclic peroxides from both the synthetic and mechanistic viewpoints because of their antimalarial activity.¹ Particularly, mechanistic studies on the degradation of aryl-substituted bicyclic peroxides promoted by Fe(II) compounds are important to disclose potent antimalarial intermediates and to prepare more effective antimalarial bicyclic peroxides.^{1c-g} Posner and coworkers reported that structurally simple and easily prepared 1,4-diaryl-2,3dioxabicyclo[2.2.2]oct-5-enes **1a–b** (**1a**: $Ar = p-FC_6H_4$, **1b**: $Ar = C_6H_5$) are potent antimalarials.^{1e} In the reaction of fluorinated cyclic peroxide **1a** with FeBr₂ in THF, 1-(*p*-fluorobenzoyl)-3-(*p*-fluorophenyl)-2,3-epoxycyclopentane **2a**, whose stereochemistry was not determined, and 1,4-di(*p*-fluorophenyl)cyclohex-2-ene-1,4diol **3a** were reported to be produced through a mono-oxyl radical intermediate (Scheme 1).^{1e} On the contrary, Suzuki and Noyori reported that the reaction of **1b** with FeCl₂(PPh₃)₂ in CH₂Cl₂ produced the corresponding diepoxide **4b** through a similar mono-oxyl radical intermediate (Scheme 2).^{2†} These contrasting results stimulated us to reinvestigate the reaction of **1** with FeBr₂ in connection with our ongoing program studying the degradation mechanism of aryl-substituted bicyclic peroxides with FeBr₂.⁴ Herein we wish to report that **1a**-**c** reacted with FeBr₂ to produce *syn*-1,2;3,4-bis(epoxy)-1,4-diarylcyclohexanes **4a**-**c** and *cis*-3,6-diaryl-2,3-epoxycyclohexanones **5a**-**c** as major

Scheme 1.

* Corresponding author. Tel./fax: +81-25-262-7150; e-mail: kamata@ed.niigata-u.ac.jp

[†] Turner and Herz also reported that the reaction of ascaridole with FeSO₄ in aqueous THF produced the corresponding diepoxide through a mono-oxyl radical intermediate.³

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02024-5

Keywords: 1,4-diaryl-2,3-dioxabicyclo[2.2.2]oct-5-ene; antimalarial cyclic peroxide; malaria; bicyclic peroxide; FeBr₂; rearrangement; diepoxide; epoxyketone; mechanism.

Scheme 2.

products instead of the previously reported epoxycyclopentanes **2a-c**.

When bicyclic peroxide **1a** (0.2 mmol) was treated with 1 equiv. of FeBr₂ (0.2 mmol) in dry THF (10 ml) under nitrogen (5 min) at 20–23°C,[‡] *cis*-3,6-di(*p*-fluorophenyl)-2,3-epoxycyclohexanone **5a** (58%)[§] was produced as a major product accompanied with trace amounts of *cis*-1,4-di(*p*-fluorophenyl)cyclohexan-1,4-diol **3a** (<1%) and 4,4"-difluoro-[1,1',4',1"]terphenyl **6a** (3%) (Scheme 3, run 1 in Table 1). Interestingly, *syn*-

1,2;3,4-bis(epoxy)-1,4-diphenylcyclohexane 4a (52%) was obtained along with 3a (<1%), 5a (26%), and 6a (<1%) in the reaction of 1a with a catalytic amount of FeBr₂ (0.2 equiv.) in THF (run 2). Likewise, *syn*-1,2;3,4-bis(epoxy)-1,4-di(*p*-fluorophenyl)cyclohexane 4b (52%) was obtained from 1b (run 3). On the other hand, a similar catalytic reaction of 1c with FeBr₂ resulted in the formation of epoxyketone 5c (65%) as a major product (run 4). In contrast to the reactions in THF, 4a-c were produced as major products in the reactions of 1a-c with FeBr₂ in CH₃CN (runs 6–8).

Scheme 3.

[‡] General experimental procedure: To a solution of 1 (0.2 mmol) in dry THF (10 ml) was added FeBr₂ (0.04–0.20 mmol, 98%, Aldrich). The mixture was stirred at 20–23°C under nitrogen atmosphere for 5 min. The mixture was passed through a silica gel short column using CH₂Cl₂ as a solvent to remove inorganic iron compounds. The eluent was concentrated and the residue was separated by TLC (*n*-hexane/CH₂Cl₂). All products were characterized by their spectral data and **4b** was confirmed by the reported spectral data.^{2,5} Selected data for the representative products are described below.

Compound **4a**: colorless needles; mp 155–156°C; IR (KBr, cm⁻¹); 3020, 2980, 2940, 2890, 1607, 1518, 1509, 1446; ¹H NMR (200 MHz, CDCl₃) δ 2.17–2.37 (m, 2H), 2.41–2.60 (m, 2H), 3.30 (s, 2H), 6.96–7.17 (m, 4H), 7.28–7.45 (m, 4H); ¹³C NMR (50 MHz, CDCl₃) δ 26.30 (t, 2C), 56.76 (s, 2C), 57.80 (d, 2C), 115.39 (d, 4C, J_{C-F} =21.5 Hz), 126.76 (d, 4C, J_{C-F} =8.2 Hz), 130.03 (s, 2C, J_{C-F} =3.1 Hz), 162.22 (s, 2C, J_{C-F} =245 Hz). Anal. calcd for C₁₈H₁₄F₂O₂; C, 71.99; H, 4.70. Found: C, 71.78; H, 4.86%. MS (EI) 300 (M^+ , 2.1%), 121 (100%).

Compound **5a**: colorless needles; mp 146–149°C; IR (CHCl₃, cm⁻¹) 3050, 3020, 2970, 2890, 1711(C=O), 1612, 1517; ¹H NMR (200 MHz, CDCl₃) δ 1.97–2.12 (m, 1H), 2.23–2.70 (m, 3H), 3.29 (dd, 1H, J=12.2 Hz, 6.5 Hz), 3.38 (s, 1H), 6.98–7.27 (m, 6H), 7.30–7.42 (m, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 25.11 (t, 1C), 27.29 (t, 1C), 52.68 (d, 1C), 63.25 (s, 1C), 64.26 (d, 1C), 115.63 (d, 2C, J_{C-F} =21.4 Hz), 115.68 (d, 2C, J_{C-F} =21.5 Hz), 126.99 (d, 2C, J_{C-F} =8.3 Hz), 129.96 (d, 2C, J_{C-F} =8.1 Hz), 134.12 (s, 1C, J_{C-F} =2.9 Hz), 161.88 (s, 1C, J_{C-F} =244 Hz), 162.63 (s, 1C, J_{C-F} =246 Hz), 203.93 (s, 1C). Anal. calcd for C₁₈H₁₄F₂O₂: C, 71.99; H, 4.70. Found: C, 72.05; H, 4.90%. MS (EI) 300 (M^+ , 9.9%), 122 (100%). Compound **6a**: colorless prisms; mp 219–222°C; IR (KBr, cm⁻¹) 3070, 1605, 1517, 1491, 1396, ¹H NMR (200 MHz, CDCl₃) δ 7.08–7.22 (m, 4H),

Compound **6a**: coloriess prisms; mp 219–222°C; IR (KBr, cm ⁻¹) 30/0, 1605, 1517, 1491, 1396, ⁻¹H NMR (200 MHz, CDCl₃) δ 7.08–7.22 (m, 4H), 7.52–7.64 (m, 4H), 7.61 (s, 4H); ¹³C NMR (50 MHz, CDCl₃) δ 115.68 (d, 4C, J_{C-F} =21.2 Hz), 127.36 (d, 4C), 128.52 (d, 4C, J_{C-F} =8.2 Hz), 136.65 (s, 2C, J_{C-F} =3.3 Hz), 139.09 (s, 2C), 162.46 (s, 2C, J_{C-F} =245 Hz). Anal. calcd for C₁₈H₁₂F₂: C, 81.19; H, 4.54. Found: C, 80.80; H, 4.76%. MS (EI) 266 (M^+ , 100%).

[§] The structure of **5a** was determined on the basis of the following data (see also Scheme 3). The ¹³C NMR spectrum exhibited a one-carbon singlet at 203.93 ppm assigned to the aliphatic carbonyl carbon (C_1). The IR spectrum exhibited a carbonyl absorption at 1711 cm⁻¹ assigned to the cyclohexanone skeleton. In the ¹H NMR spectrum was found the one-proton singlet at 3.38 ppm assigned to the hydrogen (H^a) attached to the epoxy ring. The one-proton doublet of doublets (J=12.2 Hz, 6.5 Hz) at 3.29 ppm was assigned to the hydrogen (H^f) under the aryl α to the carbonyl group. These data supported the structure of **5a** rather than that of **2a**. The stereochemistry of **5a** was then determined by ¹H–¹H COSY and NOE experiments. When the peak at 3.29 ppm (H^f) was irradiated, NOE effects were observed for H^b (3.0%) and H^d (3.9%), but not for H^a, H^c, and H^e. Furthermore, no NOE effect was observed for all cyclohexyl ring protons when the peak at 3.38 ppm (H^a) was irradiated. These data suggest that H^a and H^f are located in equatorial and axial positions, respectively. Thus, the relationship of the two aryl groups in **5a** was concluded to be cis. The structures and stereochemistries of **5b** and **5c** were similarly determined.

Table 1. Fe(II)-promoted degradation of 1,4-diaryl-2,3-dioxabicyclo[2.2.2]oct-5-enes 1 and syn-1,2;3,4-bis(epoxy)-1,4-diarylcy-clohexanes 4^{a}

Run	Substrate	Solvent	Additive	Conv. (%)	Yield (%) ^b			
					3	4	5	6
1 ^c	1a	THF	None	100	<1	0	58	3
2	1a	THF	None	100	<1	52	26	<1
3	1b	THF	None	100	<1	52	20	3
4	1c	THF	None	100	2	0	65	3
5°	1a	THF	HMDB ^d	100	<1	64	22	3
6	1a	CH ₃ CN	None	95	<1	69	<1	2
7	1b	CH ₃ CN	None	100	<1	73	<1	2
8	1c	CH ₃ CN	None	91	0	50	22	2
9	4a	THF	None	63	0	0	34	0
10	4b	THF	None	73	0	0	34	0
11	4c	THF	None	100	0	0	76	0
12°	4 a	CH ₃ CN	None	24	0	0	11	0
13°	4b	CH ₃ CN	None	22	0	0	10	0
14 ^c	4c	CH ₃ CN	None	65	0	0	48	0

^a 1 (or 4)=0.20 mmol; $\text{FeBr}_2=0.04$ mmol; solvent=10 ml; at 20-23°C; reaction time: runs 1-8=5 min, runs 9-14=30 min.

^b Isolated yield by silica gel TLC.

^c FeBr₂=0.20 mmol.

^d Hexamethyl Dewar benzene (0.20 mmol).

Detailed mechanistic studies further provided the following results: (i) addition of hexamethyl Dewar benzene (HMDB) to capture a high-valent Fe(IV)=O species, which is proposed as a potent antimalarial intermediate,^{1e,7-10} did not produce the expected hexamethylbenzene (HMB), but changed the product distribution (compare run 1 with run 5); (ii) when the diepoxides $4a-c^{\parallel}$ were treated with FeBr₂ (0.2–1.0 equiv.) for 30 min, the epoxyketones 5a-c were produced in both THF and CH₃CN (runs 9–14); and (iii) the reaction of 1,4diol 3a with FeBr₂ (2.0 equiv.) produced the terphenyl 6a (31%) at 50% conversion of 3a.

On the basis of the above results, we propose a mechanism for the Fe(II)-promoted rearrangement of 1 as shown in Scheme 4. Both in THF and CH₃CN, the mono-oxyl radical intermediate A is generated by single electron transfer (SET) from Fe(II) to 1.^{1e,4,11} As for the transformation of the intermediate A, two different pathways are possible. One is the generation of the carbon radical intermediate **B** through an intramolecular oxyl radical addition to the olefin in A (path a). The other is the generation of the intermediate **G** by successive SET from Fe(II) to A which is a minor pathway (path b). The intermediate **B** undergoes intramolecular SET to form the carbocation intermediate C followed by the formation of the diepoxide 4 with concomitant elimination of Fe(II). As for the formation of the epoxyketone 5 from 4, two different pathways are possible. One is the reductive SET pathway by Fe(II) (path c) and the other is the Lewis acid-catalyzed pathway by Fe(III) species (path d). Thus, SET from Fe(II) to 4 regioselectively generates the carbon radical intermediate **D** since the aryl group at C₆ stabilizes the carbon radical (path c). The intermediate D undergoes intramolecular SET to form the intermediate E followed by a 1,2-hydride shift. The 1,2-hydride shift stereoselectively occurs in E since the aryl group at C₆, which stabilizes the carbocation, should favor the equatorial position. As described above, the rearrangement from 4 to 5 required a catalytic amount of Fe(II) as a SET donor (path c; runs 9-11)** and was also accelerated by electron-donating aromatic groups (p-MeC₆H₄>C₆H₅, p-FC₆H₄: runs 4, 8, 11 and 14), while the rearrangement was significantly inhibited by HMDB and CH₃CN (solvent) which may form complexes with Fe(II) to interfere with the action of Fe(II) (runs 5–8, 12–14). The possibility that the Fe(III) species, as a Lewis acid, formed in the reaction should catalyze the rearrangement through the carbocation intermediate F is considered as an alternative pathway (path d).^{††} As for the product formation from G, two different pathways are possible. One is the formation of the 1,4-diol **3** presumably derived from the reaction of G with moisture (path e). The other is the formation of the terphenyl **6** by elimination of the Fe(III)OH (path f). Dehydration of **3** by Fe(II) may be an alternative route to give **6** (path g). Finally, it should be stressed that the high-valent Fe(IV)=O species was not generated in the reaction because of the absence of rearrangement from HMDB to HMB (run 5).^{1e,7–10}

We are conducting further studies on the Fe(II)-promoted degradation of various aryl-substituted cyclic peroxides to clarify the generality of the reaction and the relationship between the reaction intermediates and the antimalarial activity.

Acknowledgements

We are grateful to Professor Eietsu Hasegawa (Faculty of Science, Niigata University), Professor Tsutomu Miyashi and Dr. Hiroshi Ikeda (Graduate School of Science, Tohoku University) for their helpful discussions and assistance. We also thank Professor Toshio Suzuki and Mr. Jun-ichi Sakai (Faculty of Engineering, Niigata University) for the 500-MHz ¹H NMR measurement.

References

- 1. (a) Meshnick, S. R.; Jefford, C. W.; Posner, G. H.; Avery, M. A.; Peters, W. Parasitol. Today 1996, 12, 79 and references cited therein; (b) McCullough, K. J.; Nojima, M. Curr. Org. Chem. 2001, 5, 601; (c) Posner, G. H.; Wang, D.; Gonzares, L.; Tao, X.; Cumming, J. N.; Klinedinst, D.; Shapiro, T. A. Tetrahedron Lett. 1996, 37, 815; (d) Posner, G. H.; Gonzares, L.; Cumming, J. N.; Klinedinst, D.; Shapiro, T. A. Tetrahedron 1997, 53, 37; (e) Posner, G. H.; Tao, X.; Cumming, J. N.; Klinedinst, D.; Shapiro, T. A. Tetrahedron Lett. 1996, 37, 7225; (f) Bloodworth, A. J.; Hagen, T.; Johnson, K. A.; Lenoir, I.; Moussy, C. Tetrahedron Lett. 1997, 38, 635; (g) O'Neil, P. M.; Bishop, L. P.; Searle, N. L.; Maggs, J. L.; Ward, S. A.; Bray, P. G.; Storr, R. C.; Park, B. K. Tetrahedron Lett. 1997, 38, 4263; (h) Takaya, Y.; Kurumada, K.; Takeuji, Y.; Kim, H.-S.; Shibata, Y.; Ikemoto, N.; Wataya, Y.; Ohshima, Y. Tetrahedron Lett. 1997, 39, 1361; (i) Kim, H.-S.; Shibata, Y.; Wataya, Y.; Tsuchiya, K.; Masuyama, A.; Nojima, M. J. Med. Chem. 1999, 42, 2604; (j) Kim, H.-S.; Nagai, Y.; Ono, K.; Begum, K.; Wataya, Y.; Hamada, Y.; Tsuchiya, K.; Masuyama, A.; Nojima, M.; McCullough, K. J. J. Med. Chem. 2001, 44, 2357; (k) Hindley, S. H.; Ward, S. A.; Storr, R. C.; Searle, N. L.; Bray, P. G.; Park, B. K.; Davies, J.; O'Neill, P. M. J. Med. Chem. 2002, 45, 1052; (1) Hamada, Y.; Tokuhara, H.; Masuyama, A.; Nojima, M.; Kim, H.-S.; Ono, K.; Ogura, N.; Wataya, Y. J. Med. Chem. 2002, 45, 1374 and references cited therein.
- Suzuki, M.; Ohtake, H.; Kameya, Y.; Hamanaka, N.; Noyori, R. J. Org. Chem. 1989, 54, 5292.
- 3. Turner, J. A.; Herz, W. J. Org. Chem. 1977, 42, 1895.

[¶] Compounds **4a–c** were independently prepared by the direct irradiation ($\lambda > 290$ nm) of **1a–c** in CH₂Cl₂ with a 2 kW Xe lamp.^{5,6} The structures of **4a** and **4c** were also confirmed by comparison of their spectral data with that of known **4b**.^{2,5}

^{**} A referee pointed out the possibility that the Fe(III) species, as a Lewis acid, which may be contained in the purchased FeBr₂, promoted the rearrangement from 4 to 5 rather than FeBr₂, as a SET donor, did. At the present stage, it is difficult to rule out such a possibility. Further experiments will be needed for clarification of this point.

^{††} Iranpoor and Salehi reported that FeCl₃, as a SET oxidant, underwent a catalytic ring opening of epoxides in various alcohols.¹²

- (a) Kamata, M.; Kudoh, T.; Kaneko, J.; Kim, H.-S.; Wataya, Y. *Tetrahedron Lett.* 2002, 43, 617; (b) Kamata, M.; Ohta, M.; Komatsu, K.; Kim, H.-S.; Wataya, Y. *Tetrahedron Lett.* 2002, 44, 2063.
- Takahashi, Y.; Wakamatsu, K.; Morishima, S.; Miyashi, T. J. Chem. Soc., Perkin Trans. 2 1993, 243.
- Rigaudy, J. In CRC Handbook of Organic Photochemistry and Photobiology; Horspool, W. M.; Song, P.-S., Eds.; CRC Press: Boca Raton, FL, 1995; pp. 325–334.
- Posner, G. H.; Cumming, J. N.; Ploypradith, P.; Oh, C. H. J. Am. Chem. Soc. 1995, 117, 5885.
- Posner, G. H.; Park, S. B.; Gonzalez, L.; Wang, D.; Cumming, J. N.; Klinedinst, D.; Shapiro, T. A.; Bachi, M. D. J. Am. Chem. Soc. 1996, 118, 3537.
- Cumming, J. N.; Wang, D.; Park, S. B.; Shapiro, T. A.; Posner, G. H. J. Med. Chem. 1998, 41, 952.
- Traylor, T. G.; Miksztsal, A. R. J. Am. Chem. Soc. 1987, 109, 2770.
- 11. Abe, M.; Inakazu, T.; Munakata, J.; Nojima, M. J. Am. Chem. Soc. 1999, 121, 6556 and references cited therein.
- 12. Iranpoor, N.; Salehi, P. Synthesis 1994, 1152.